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Abstract

An analytical model for free vibration analysis of piezoelectric coupled moderately thick circular plate is presented
based on Mindlin’s plate theory for the cases where electrodes on the piezoelectric layers are shortly connected. The
distribution of electric potential along the thickness direction is simulated by a sinusoidal function. The differential
equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply sup-
ported edge. The detailed mathematical derivations are presented. Numerical investigations are performed for plates
with two surface-bonded piezoelectric layers for various diameter—thickness ratios and the results are verified by those
obtained from three-dimensional finite element analyses (ABAQUS 6.1). © 2002 Published by Elsevier Science Ltd.
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1. Introduction

Since piezoelectric material has been widely used as actuators and sensors in smart structures, a study on
modelling of a piezoelectric coupled structure is necessary and has been addressed by a lot of researchers.
Beams with surface-bonded or embedded piezoelectric sensors and actuators were first analysed (Bailey and
Hubbard, 1985; Crawley and de Luis, 1987). Different from the model based on a Euler beam assumption
proposed by Crawley and Anderson (1989), Aldraihem and Khdeir (2000) used two shear deformation
theories, the first-order beam theory (Timoshenko et al., 1974) and higher-order beam theory (Khdeir and
Reddy, 1997, 1999), to model smart beams with shear- and extension-mode piezoelectric actuators.

Piezoelectric coupled plate modelling and analysis were also keenly researched. A three-dimensional
solution of a plate is usually considered as an exact solution and used to verify the accuracy of the results
provided by approximate theories, such as a two-dimensional plate theory. Bisegna and Maceri (1996)
presented an exact three-dimensional solution for a simply supported transversely isotropic rectangular
homogeneous piezoelectric plate. Heyliger (1997) obtained exact solutions for the static behaviour of
laminated piezoelectric plates with simply support boundary condition. So and Leissa (1998) applied Ritz
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method in a three-dimensional analysis to obtain accurate frequencies for thick circular and annular plates
with completely free edges, using trigonometric functions in the circumferential co-ordinate and algebraic
polynomials in the radial and axial co-ordinates as the admissible functions. Even though three-dimen-
sional models represent the plate behaviour more exactly than approximate methods, such as two-
dimensional plate theories, they can only be solved analytically for some limited boundary conditions.

Due to their simplicity, two-dimensional models are still the most commonly used plate models. Refining
the classical plate theory (CPT) (Love, 1944), Fernandes and Pouget (2001) and Almajid et al. (2001)
performed analyses for thin piezoelectric laminated composites. Huang and Wu (1996) proposed two kinds
of modification to the first-order shear deformation theory (Whitney and Pagano, 1970) to predict the static
behaviour of hybrid multi-layered piezoelectric plates. To investigate the free vibration of piezoelectric
laminate circular plates, Heyliger and Ramirez (2000) combined approximations of one-dimensional finite
elements in the thickness direction and analytic functions in the plane within the context of the Ritz
method. Yu (1995) derived equations of piezoelectric plates accounting for large deflections on the basis of
CPT (Love, 1944) and refined plate theory (Mindlin, 1984). As early as 1952, Mindlin (1952) gave an
analytical solution for forced flexural vibration of piezoelectric crystal plates. But no piezoeffects will be
obtained since a linear distribution of electric potential is assumed across the thickness of piezoelectric plate
if this model is applied to free vibration with two shortly connected electrodes bonded to the surfaces of
piezoelectric plate.

The finite element method was also applied to analyse piezoelectric coupled structures (Hwang and Park,
1993; Chandrashekhara and Agarwal, 1993; Kim et al., 1996; Lam et al., 1997; Sheikh et al., 2001). Wang
et al. (2000) proposed a two-dimensional finite element model by modifying the electric potential expansion
proposed by Mindlin (1955, 1972) to satisfy the constant electric potential distribution on the surface with
electrode. Three-dimensional finite element method accounting for piezoelectric materials has been im-
plemented by commercial finite element analysis (FEA) codes ABAQUS (HKS Inc., 1993) and ANSYS
(Swanson Inc., 1993). The finite element method is a powerful tool but sometimes an analytical solution is
still needed to get a deep and clear understand of the mechanics of structural vibration.

There is a special interest in the modelling for piezoelectric coupled circular and annular plates since
piezoelectric material can be used as actuator in ultrasonic motor (Lebrun et al., 1997). Hagood and
McFarland (1995) developed an analytical model for a circular plate with a piezoelectric actuator by as-
suming that the distribution of electric potential is uniform in the radial direction. In fact, many published
works on the mechanics model for the analysis of the piezoelectric coupled beams and plates adopted the
assumption that the distribution of electric potential in the longitudinal direction of the piezoelectric layer is
uniform and that in its thickness direction is linear, which may violate the Maxwell static electricity
equation (Wang and Quek, 2000). Wang et al. (2001) assumed a quadratic distribution of electric potential
across the thickness, which was verified by a 3-D FEA, to obtain the analytical solution for free vibration
analysis of a piezoelectric coupled circular plate. Their analytical solution is applicable to only thin plates
based on CPT.

In this paper, an analytical model for the free vibration analysis of piezoelectric coupled moderately
thick circular plate is proposed. The displacement assumption follows the improved plate theory (IPT)
(Mindlin, 1951a, 1951b). A sinusoidal function is adopted to describe the distribution of electric potential
along the thickness direction. It is noted that the sinusoidal function has a similar shape to the quadratic
one, but can make the governing equations simpler. The Maxwell static electricity equation is taken as
one of the governing equations. The differential equations of motion are solved for two boundary condi-
tions: clamped edge and simply supported edge and detailed mathematical derivations are presented.
Numerical investigations are performed for plates bonded by two piezoelectric layers of various diameter—
thickness ratios and the results are verified by the results of three-dimensional finite element analyses using
ABAQUS 6.1. The results obtained by the CPT-based model (Wang et al., 2001) are also presented for
comparison.
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Part 2: piezoelectric layers

v

Part 1: host structure

I L I

Fig. 1. Cross-section of a circular plate mounted with two piezoelectric layers.

2. Displacement and electric potential field models for circular plate

Fig. 1 shows the cross-section of a laminated circular plate comprising one host layer and two piezo-
electric layers. Both top and bottom surfaces of each piezoelectric layer are fully covered by electrodes that
are shortly connected. The plate has a radius of ry and the thickness of the host layer and each piezoelectric
layer are 24 and #y, respectively. The cylindrical coordinate system is adopted where the 0 plane is co-
incident with the mid-plane of the undeformed plate.

2.1. Displacement field based on Mindlin’s thick plate model

When thick plates are considered, the effect of shear deformation and rotary inertia cannot be omit-
ted with negligible error. According to Mindlin (1951a,b) displacement fields of the plate are given
by

u(r,0,z,t) = w(r,0,1), (1)
up(r,0,z,t) = z,(r,0,1), (2)
ug(r,0,z,1) = zyy(r, 0, 1), (3)

where u,, u,, and uy are the displacements of the plate in the transverse, radial, and tangential direction,
respectively; w is the transverse displacement of the mid-plane; and , and y, are the rotations of vertical
lines perpendicular to the mid-plane, measured on the z—r and z—0 planes, respectively, as shown in Fig. 2. It
is assumed that (a) there is no ‘“‘thickness stretch” of the plate; (b) straight material lines that are per-
pendicular to the mid-plane in the undeformed state remain straight in the deformed state even though they
may not remain perpendicular to the mid-plane.

The poling direction of the piezoelectric material is assumed to be in the z-direction. When external
electric potential is applied across the piezoelectric layer, a differential strain is induced which results in the
bending of the plate. The strain of the host plate and piezoelectric layer in the radial and tangential di-
rections and the shear component are given by

Ou, oy,

— =z

vy T b 4
¢ or or (4)
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(a) Plate in undeformed state

(b) Plate in deformed state

Fig. 2. Deformation of plate.
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The stress components in the host plate are expressed as

) =1 _Eﬂz (& + uego) = 12_7Eﬂz <uwr’+ uf—lgg + aéfj), 9)
2 =1fﬂ2 (sae+usw)=%(%+f—‘£§+u%‘i") (10)
Tifl*):z(liu)yf”:z(lziu) (%_% %0) (1D
== (442, o
7y =K2ﬁm=ﬁz(%m<wﬁ%>, (13)

where the superscript (1) represents the variable in the host structure; £ and u are the Young’s modulus and
Poisson ratio of the host material; and «x is the shear factor employed in Mindlin’s plate model (Mindlin,
1951a, 1951b) to correct for the shear modulus, chosen as 7/v/12 here.

The stress components in piezoelectric layer can be written as

c? = 6151 & + 6152800 —e3 k., (14)
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ol = Efzgrr + 6151899 — ek, (15)
5 = 4Ty = Ci)van (16)
12 = K’CEy,. + eiskr, (17)
Ty = 1Clyy, + exsEn, (18)

where the superscript (2) represents the variable in the piezoelectric material; C1 1 C12 and e3; are the re-
duced material constants of the piezoelectric medium (see Appendix A), and are given by C h=ChH—
((CR)*/CE), Efz = Cf, — ((CR)’/CE) and &) = e3 — (Chiess/CR); CF, Ch, Cfy and CE are the moduli of
elasticity at constant electric field; e;; and e;s are the piezoelectric electric constants; and E,, Ey and E. are
the electric field intensities in the radial, tangential and transverse direction, respectively.

2.2. Distribution of electric potential in the piezoelectric layer

For free vibration analysis with the electrodes on each piezoelectric layer short-circuited, a quadratic
function was proposed and verified using FEA by Wang et al. (2001) to describe the electric potential
distribution across the thickness of piezoelectric layers in piezoelectric coupled circular plates. In this paper
a sinusoidal function is adopted instead so that a simpler governing equations can be obtained. The electric
potential at any point of the piezoelectric layers is assumed as
o(r,0,0)sin "1 h<z<h+
([)(1”7 07 t) Sinn(;i*h)7 —h _hl Lz< _ha

(19)

o(r,0,z,1) = {

where z is measured from the mid-plane of the plate in the transverse direction; # and 4, are the thickness of
the host layer and the piezoelectric layer, respectively; ¢ is the electric potential on the mid-surface of the
piezoelectric layer. It is to be noted that the assumed potential function satisfies the boundary conditions
that electric potential vanishes at the internal surfaces z = +4 and the external surfaces z = =(h + /). The
sinusoidal function employed here has a similar shape to that of the quadratic function adopted by Wang
et al. (2001).

3. Equations for free vibration analysis of piezoelectric coupled circular plate

Based on the assumption of electric potential distribution across the thickness direction shown in (19),
the components of electric field intensity £ and electric flux density D can be written as

A T .
EZ:_%:_%COSWTTM, (22)
D, = eisy,. + EnE, = ejs (w, + aa—v:) -5 % sin"(ZTTh), (23)
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— ow = 0¢p . m(z—nh
D()—€15Voz+511E0—615<l//9+@) _EII%SIn%, (24)
_ 0 0 —_ T n(z—h
D, =& (& + &p) + EnE. = Zé31< alﬁrr % —rgg) - 533h—§10 cos ( 7 ), (25)

where D,, Dy and D, are the corresponding electric displacement (electric flux density) components =1 and

3 are the reduced dielectric constant of the piezoelectric layer, and are given by & = Zy,

E3 = B33 + €3,/ CL; (see Appendix A); and Z; and =33 are the dielectric constants of the piezoelectric layer.
The resultant moments caused by the stresses are expressed, in view of Egs. (9)—(18), as

h+-hy h+hy
M, = / 20, dz = / Vdz+2 / 26} dz
—h—h; h

B oY, CE v, Oy, 4h e
= (D1 +D2) 7 <uD1 —— ol Dz> ( + 50 ) T @ (26)
h+hy h h+hy
Myo = / zoggdz = / 20y dz + 2/ zo4 dz
—hhy —h h
L\ oy v, oy 4he
D D, | 24 (D, +D —) = 27
( ]+Cf1 ) 6r+( |+ 2)( + 69) — (27)
h+hy h h+h; aw aw W
_ _ (1) @4, _ 0 0
Mrg_/hh1 Zfr9dz—[hZTr0 dz—|—2/h zT, dZ_Al(r@H ar ), (28)

where Dy, D, and 4, are constants related to plate stiffness and are given by

2ER _ 1 fo8
Dl :m7 :%h1(3h2+3hh1+h%)C|E1 and Al 2[(1H)D1+ (16512>D2‘|
11
The resultant shear forces are expressed as
h+hy h h+hy a 4h 6
Q,.:/ f,zdz:/ r§;>dz+2/ 24, = Ag( W+¢,>—ﬂ—q), (29)
iy _n h or T or
hth bt ow 4hie;s 0
_ 1) ) 4 _theis 0p
% /h h]TGZdZ / %de+ / dZ 3( 69+¢> 7 rol’ (30)

where A3 = K*(Eh/(1 + p)) + 2i2CEhy.
It is to be noted that M,,, M.y, My, O, and Qp must satisfy the following dynamic equilibrium equations

00, 00y Q /h Q*u, /h”” %u,

2 = 1
o T ro0 a2 g dz) =0, (31)
aMrr aMr() Mrr - MU() " azur et azur o
P Qr(/_,,wﬁd”th priga 2] =0, (32)
GM,(, 6M99 2Mr9 h azug hti qug
o Tre0 Ty 90T </ﬂz@d”2/h prizgp d2) =0, (33)

where p, and p, are the material densities of the host material and piezoelectric layer, respectively.
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The electric variables must also satisfy the Maxwell’s equations which require that the divergence of the
electric flux density vanishes at any point within the piezoelectric layers. In the two-dimensional analysis of
plate, this condition can be satisfied approximately by enforcing that the integration of the divergence of the
electric flux density across the thickness of the piezoelectric layers vanishes all over the plate, namely for
any r and 6,

o rd(rD,) 0Dy 0D,
/h ( or +@+ Py >dZ—O. (34)

Substituting Eqgs. (26)-(30) into Egs. (31)-(33) and Egs. (23)—(25) into Eq. (34) yield the equations of
motion,

2
A3(AW + l{l) A6 AQD A7 aatz = 0, (35)
o) ow v, v, o, Y
Ay, 42757 A3(‘p+a ) (D1+DZ)< T7e0 ) " e a0 a
(36)
—A SV, _ 0
4 612 — Y%
oY ow o, Yy O 62% _
AlAl//@"‘AQ@ A3<lp0+}"60>+2141<r260 ﬁ +A5@ A4 6[2 —0, (37)
2mE
— ln 1 (615 + 631)¥I O, (38)
where A is the Laplace operator and in polar coordinate system is given by
e 0,2
o2 ror  200*
¥ is a function of ¥, and y,, given by
oy, lﬁ Yy .
v= or ro6’ (39)

Ay, Az, A3, A4, As, Ag and A7 are constants governed by material properties and structural geometry, given in
Appendix B.

4. Solutions for piezoelectric coupled circular plates
In the four differential equation (35)—(38) there are four independent variables, w, ¥,, ¥, and ¢ that need

to be solved. The solution procedure is described hereafter. Note that the variable ¥ is not independent but
a function of ¥, and y, (see Eq. (39)).

4.1. Solutions for transverse displacement w

Eliminating ,, ¥, and ¢ from Eqgs. (35)—(38) yields an uncoupled differential equation in terms of w
only, namely,
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*w o*w *w *w o*w
where the coefficients, P, P,, P5, Py, Ps, Ps and Py, are given in Appendix B. The solution of w(r, 0,¢) for
wave propagation in the 6-direction can be written as

w(r,0,t) = W(r)ei(pe""”, (41)

where W(r) is the amplitude of the z-direction displacement and a function of radial distance only; w is the
natural frequency of the plate; and p is the wave number in the 0-direction. Substituting Eq. (41) into Eq.
(40) and cancelling e*’~“) term gives

PIKKKW + (P2 — P3(,02)KZW + (P4(,04 — P5(,02)ZW + (P7(U4 — P6w2)w = O, (42)
where A is a operator defined as

— & d p

A=y — -0

TR
Transforming Eq. (42) into the form
(A —x1)(A —x3)(A — x3)w =0, (43)
where x1, x, and x; are the three roots of the cubic equation,
P 4 (P, — P3o*)x* + (Pyo* — Pso)x + Pro* — Psor® = 0. (44)
The solution of Eq. (42) takes the form of
W =W + W, + Ws (45)

provided wy, w, and w; are solutions of the following three Bessel’s equations, respectively:

(A — X1 )wl = Oa
(A —x2)W, =0, (46)
(A — X3)W3 = 0,
The transformation x = y + (P> — P,)/3P; eliminates the second-order term of Eq. (44), resulting in
V+by+e=0, (47)
where

_P4CL)4—P5602 (Pz—P3CL)2)2 _602(P70)2—P6)+0)2(P5 —P4(,1)2)(P2—P3602) 2(P2—P3CO2)3

b _
P 37 ¢ P 3P 27P}

(48)

The discriminant of the cubic equation is given by

o= (54 (2 49
-(3) + (5) | )
In practice, d < 0 is usually satisfied. Thus, according to Cardano’s formula (Speigel, 1999), the charac-
teristic equation (44) has three distinct real roots given by
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Py’ — P
x| = 2Scos%+3wT12,
2 P’ — P,
x2:2Scosy+ ﬂ—i— 39 2, (50)
3P
4w Pyo* — P
X3 = 2Scosy+3 TC+ 3w3pl 2,
where
1 [P} 3PPs — 2P, P3) w? P} —3PP)w?
S:g\/z—i—( 1475 23;?+(3 14)(07 y = arccos | — c 3
| 2/~
In view of non-singularity of w at » = 0, the solution of Eq. (42) can be expressed as
3
W= CoZyp(or), (51
n=1
where o) = \/|x1|, %2 = /|x2| and a3 = /|x3|, C, are constants and
(), x, <0 _
Zyp(o,r) = {Ip(oc,,r), >0 (n=1,2,3) (52)

in which J,(e;7) is the Bessel function of first type and Z,(a;r) is the modified Bessel function of first type. It
should be noted that the second type Bessel functions become singular at » = 0 and have been omitted from
the solution.

4.2. Solutions for rotations \, and

If the rotations y, and y, are expressed in terms of the potential functions @(r, 6,¢) and H(r, 0, ) which
give rise to areal dilatation and rotation

od OH
lpr ==+ AN’
ar 7’69 (53)
) 00 o
T o0 or’
Egs. (36) and (37) become
0 o 0 O’H
5 |:(D1 +D2)A(p —A3@ —A4¥—A3W+A5(p:| "‘r@ |:A1 AH —A3H _A4W:| = 07 (54)
0 *P 0 o*H
@ |:(D1 +D2)A¢ —14343 _A46—l‘2 —A3W+A5(p:| —a |:A1 AH —A3H —A4a—t2:| =0. (55)

If applying the operator 0/r00 to Eq. (54), (1/r+ (0/rdr)) to Eq. (55), and subtracting, we obtain a
decoupled equation in terms of H,

H
A(AIAH—A3H—A4667) =0. (56)

Similarly, application of the operator (1/r+ (0/r0r)) to Eq. (54), 0/r00 to Eq. (55), and adding the results
yield another decoupled equation free of H,
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A (D1+D2)A¢—A3¢—A4W

It is assumed that ¢, H, and ¢ take the form

-~

®(r,0,1) = B(r)e?"~,
H(r,0,1) = H(r)e®—, (58)
o(r,0,1) = ¢(r)e” =",

where ¢(r), H(r), and ®(r) are amplitudes of ¢(r,0,t), H(r,0,1) and ®(r,0,1), respectively. Substituting
Egs. (41) and (58) into Egs. (35), (56), (57), and (38) reduces to

A3 AD + A3 A + A70°W — A A = 0, (59)

A AH — (45 — A;0")H =0, (60)

(D) 4 D)) A® — (43 — A40*) D — A + Asp = 0, (61)

AD + As AW — Ay Ap + A19p = 0, (62)
where the coefficients, Ag, A9, and 4y, are given in Appendix B. Solving Eq. (60) for H gives

H(r) = CauZsp(Bir) + CraZyp(Bi1), (63)
where Cy, and C,, are arbitrary constants;

b= VIR, R=RTA (64)

wion = {7k R 2o

_ LB, F <O,
Zulbir) = {Kp(ﬁlﬂ”), Fi > 0;

J, and Y, are the Bessel functions of the first kind and the second kind, respectively; and /, and K, are the
modified Bessel functions of the first kind and the second kind, respectively. To avoid singularity at » = 0,
C7, = 0. Thus, Eq. (63) is reduced to

H(r) = CouZep(17)- (66)
Solving Egs. (59), (61), and (62) for @ yields

s G,/ Ay G (AoAds — AeAs) -+ .. . [As(AoAs — AgAg)
l") = A w+ | ——=
A10A3A6G1 *A3A5 +A3A6 — A4A6602 A3 — A4602 G2
Gi(Ar4o® — A3A10) — A3 A3As(ds — 1) A
A3 — A4CU2 (Aﬁ — A3A9)(A3 — A4w2)

AsAoA700* — AgA A3 _A10A§ + (410D + 410D, — As)A7w2}w}
G2 (As — A3A9)(A3 — A4(,02)
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Substituting Egs. (51), (58), (66) and (67) into Eq. (53) and replacing iCg, by Cg yields
W, (r,0,1)

_ GZ/AIO 23: G1 (A9A3 — A()Ag)xﬁ + (G1A7A9602 — G1A3A10 — Ag)xn
A]()A:;A(,G] — A3A5 +A3A(, - A4A6Cl)2 1 A3 — A4(}J2
4 A5(A9A3 — A6Ag)x,, + A5A9A7(U2 - A6A10A3
G

AsAs(Ag — Dx, + A1043 AwDy + A1gDy — As)A70°
-2 s(4s P + A3 + (A1wDi + 410D 5)A70 }Cnocnzflp(ocnr)Jr

CopZe,(Py7) }ei(pOwt)

(A(, — A3A9)(A3 — A4CL)2) r
(68)
lpﬁ(n 07 t)
_ sz/Al() i G1 (A9A3 — A6A8)X'21 + (G1A7A9602 — GlAgAl() — A3)x,,
A10A3A6G1 — A3A5 +A3A6 — A4A60)2 1 A3 — A4(}J2

n As(AgAs — AgAg)x, + AsAoA700* — AeA19A3
Gy
A3A5(Ag — l)x,, +A10A§ + (A10D1 +A10D2 — A5)A7(,()2:| C,,Z,,p(oc,,r)
(AG — A3A9)(A3 — A4CL)2) r

(69)

where the coefficients, G; and G,, are given in Appendix B.
4.3. Solutions for electric potential ¢

Solving Eq. (61) for ¢(r) yields

Dl +D2 - A3 —A4(D2 ~ A3 R

Substituting Egs. (51), (67), and (70) into Eq. (58) results in

o(r,0,1)
3 { Gy(4s — A30” — Dix, — Do) {Gl (AoAs — AeAs)x2 + (G A9 — GiA3Ayg — A3)x,
2\ AsAro(AroAdsAeGr — Asds + Asds — Audge?) As — 4,0
n As(AoAs — AgAg)x, + AsAoA700* — AgA 043
G,
A3As(As — 1)x, + A10d% + (410D + A1oDy — As)A70? A

— + =2 CnZn o7 ei(p(?—mt). 71
(A — A3Ag) (A5 — Ay?) } As } p(oar) (71)

4.4. Determination of frequencies by boundary conditions

In the proceeding sections we obtained explicit expressions for transverse displacement w(r, 0,¢), rota-
tions y,.(r, 0,¢) and ,(r, 0,t), and electric potential ¢(r, 0,¢), which are all functions of the frequency w. To
determine the frequency, the boundary conditions must be employed. Two kinds of boundary conditions,
clamped edge and simply supported edges, are addressed.
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(a) Clamped edge
For clamped edge at » = 7y, both the transverse displacement w and rotations ¥, and y, vanish, namely,

W(I"(), 97 t) = 07
lpr(r0707 t) = 07 (72)
lﬁg(l”(), 97[) = Oa

where ry is radius of the plate. If the plate is isolated at the edge, the electrical flux conservation equation is
given by
h+hy
/ D, (ry,0,t)dz = 0. (73)
h

Substituting the solutions obtained in the proceeding sections for w, ¥, ¥,, and ¢ into Eqgs. (72) and (73)
and some simplifications yield

B AT CAN
B B Sl=10 ; (74)
B e )\a) o
Si Sp Sy 0 6
where sﬁ?, 5(2? and sg‘g, (i=1,2,3,4;j = 1,2,3), are functions of the frequencies, given in Appendix B. Non-

trivial solutions for C;, C,, C;, and Cs implies that the determinant of the coefficients matrix of Eq. (74)
vanishes, namely,

s s) w50
IEEE D o
S31 S;0 S33 S36
s o

Solving Eq. (75) for @ gives the frequencies of flexural free vibrations.

(b) Simply supported edge (hard type)
At the edge r = 1, the transverse displacement w, the resist bending moment in the z—r plane M,,, and the
rotation in tangent plane y, vanish, namely,

w(ro, 0,t) =0,
M, (ro,0,1) =0, (76)
lp(j(l"(), 9, t) = O

Of course, Eq. (73) should also be satisfied. If the solutions for w, ¥,, ¥, and ¢ are substituted into Egs.
(76) and (73), four linear equations in terms of the arbitrary constants, C;, C,, C;, and Cg, are obtained,
namely,

s o 0 G 0

BB gz - 8 ’ w
W% w\e 0

Sar San Sa3 0 Sa6 6

where the coefficients, s;;", 53¢, 53¢

®) () (b

and sf{é), (i=1,2,3,4;j=1,2,3), are given in Appendix B. To obtain

non-trivial solutions for Cy, C,, C3;, and Cg, the determinant of the coefficients matrix of Eq. (77) must
vanish, from which the frequencies, w, can be obtained.
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(c¢) Simply supported edge (soft type)
At the edge r = 1y, the transverse displacement w, the resist bending moment in the z—r plane and the z—6
plane, M,, and M,y (instead of ,), vanish, namely,

w(ro, 0,1) =0,
Mrr(r0707 t) = 07 (78)
Mr()(r(), 0, l‘) =0.

Obviously Eq. (73) should be satisfied again. If the solutions for w, ¥,, ., and ¢ are substituted into Eqgs.
(78) and (73), Eq. (77) is obtained again, but the coefficients, s(;:,), sg?, n=1,2,3, are replaced by 3(3;) and s§2
which are defined in Appendix B. The frequencies, w, can be obtained again from the condition that the
determinant of the coefficients matrix must vanish.

4.5. Mode shapes

It is noted that only three of the four equations in Eqgs. (74) or (77) are linearly independent.
Thus, C;, C,, and Cs can be expressed in terms of C; by solving the first equations of Eqs. (74) or (77), as
follows:

Cy = Ca G,
G, = Cr G, (79)
Cs = Cc6Cs,

where the coefficients, Cci, Ccs, and Cgg, are given in Appendix B.

Substituting Eq. (79) into the solutions for w, V,, ¥,, and ¢, which we obtained in the proceeding
sections, yield the mode shapes of w, V,, ¥, and ¢, respectively.

The normal modes of the transverse displacement w(r, 6) are given by

(r, 0) = ;CC,,ZnP(oc,,r) (2;“8((1;?) ) , (80)

where to get a close form we let Ce3 = 1; Ce; and Cc, are given in Appendix B.
The normal modes of the rotation in the z—r plane ,(r, 8) are given by

¥, (r,0,1)
_ GZ/AIO 23: G1 (A9A3 — A6A8)xi + (G1A7A9w2 — G1A3A10 —Ag)x,,
A10A3A6G1 —A3A5 +A3A6 —A4A6CU2 ot Az —A4(1)2
+A5(A9A3 — A6Ag)x,, —|—A5A9A7(1)2 —A6A10A3
G,

A3As(Ag — 1)x, + A1042 + (410D + AgDy — As)A70? CespZy

E s(Ag — 1)x, + 41045 + (410D + 410D, 5)A70 ContnZ. (o) + c6PZep(B17)
(A() — A3A9)(A3 — A4602) np r

( sin(p0) )
X . (81)
cos(pf)
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The normal modes of the rotation in the tangent plane v, (r, 0) are given by

lp()(rv 67 t)

_ pGa /Ay 23: Gi(AoAs — AeAs)x2 + (G1A7490* — G1A3A 10 — A3)x,
A10A3A6G1 —A3A5 +A3A6 — A4A6(()2 =l A3 — A4C{)2
n As(AoAs — AgAs)x, + AsAgAr* — AgA1045
Gy

A3As(4s — 1 A3 + (410D) + A1oDs — As)A70° | CeZ,
34s(A4s )Xu + Ao 3"’( 1001 + 2‘0 2 5)A7 ] Cen ”p(a”r)—i-CCéﬂlZép(ﬁl”)
(A6 — A349)(A3 — A40?) d

() ®)

The normal modes of the electric potential @(r, ) are given by
3

( 0 [) Z Gz(A3 — A4(,l)2 — Dlx,, — szn)
14 pry
P AsA10(A104346G1 — A3As + A3Ae — AsAs?)

% |:G| (A9A3 — AGAg)xi + (G1A7A9a)2 — G1A3A10 — A3)x,,

n=1

A3 — A4(1)2
+A5(A9A3 — AgAs)x, + AsAoA700* — AgA1043
G
A3A5(As — 1)x, + A1043 + (A10Dy + 410Dy — As)A70° A3
— 5 e CCnan(anr)
(A — A3A9) (A3 — As?) As
sin(p0
X ( (p0) ) (83)
cos(ph)

5. Numerical examples and discussion

The numerical solution for a three-layer laminated plate shown in Fig. 1 is investigated. The host ma-
terial is used by steel and the piezoelectric layer is PZT4. The piezoelectric layers are poled in the thickness
direction and both surfaces of each layer are short-circuited. The material properties are listed in Table 1.
The thickness of the host layer and piezoelectric layers are 20 and 2 mm, respectively. Four plates of
different radii, 0.6, 0.3, 0.2, and 0.1 m, are studied. The results are compared with those of 3D FEA and the
analytical model (Wang et al., 2001) based on Kirchhoff’'s CPT. Two kinds of boundary conditions,
clamped edges and simply supported edges, are investigated. To investigate the effect of piezoelectric layer,
four single-layer plates, the dimension and properties of which are identical to those of the host material of
the three-layer piezoelectric coupled plates, are also analysed, and the results compared. The 3D FEAs were
carried out using ABAQUS 6.1.

5.1. Clamped edges

Tables 2-5 list comparisons of the frequencies calculated for clamped edges by the IPT-based model
(proposed), the CPT-based model (Wang et al., 2001), and 3D FEA, where Table 2 is for vy = 0.6m, Table 3
for ry = 0.3m, Table 4 for ry = 0.2m, and Table 5 for ry, = 0.1m. The following notations are adopted in the
tables: w, m represents the flexural vibration frequency of the piezoelectric laminate plate obtained by
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Material properties of the piezoelectric coupled plate
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Property Structural layer Piezoelectric layer
E (GPa) 200 _
u 0.3 -
C% (GPa) - 132
CE (GPa) - 71
C% (GPa) - 115
C% (GPa) — 73
CE (GPa) - 26
e3 (Cm™) - —4.1
es3 (Cm™?) - 14.1
e;s (Cm™2) — 10.5
251 mFm™) - 7.124
Z3 (nFm™) - 5.841
p (kgm™?) 7800 7500
Table 2

Comparison of frequencies for ro/h = 60 (clamped edge)

P m Dp_fem (rad/s) @p_min (rad/s) Dp_kir (rad/s) U)p_min/a)p_fem (Up_kir/wp_fem
0 1 900.1 899.1 902.5 0.999 1.003
1 1 1862.7 1864.1 1878.2 1.001 1.008
2 1 3050.9 3044.7 3081.1 0.998 1.010
0 2 3475.2 3468.3 3513.4 0.998 1.011
1 2 5272.1 5272.6 5373.7 1.000 1.019
2 2 7306.2 7283.0 7472.1 0.997 1.023
Table 3

Comparison of frequencies for r/h = 30 (clamped edge)

p m Dp_fem (rad/s) ®p_min (rad/s) Dp_kir (rad/s) Wp_ min/wp,fem CUp,kir/a)p,fem
0 1 3567.7 3556.0 3609.9 0.997 1.012
1 1 7295.5 7295.2 7512.7 1.000 1.030
2 1 11844.0 11775.6 12324.3 0.994 1.041
0 2 13456.0 13375.0 14053.7 0.994 1.044
1 2 20075.0 20017.1 21494.7 0.997 1.071
2 2 27467.0 27205.5 29888.5 0.990 1.088
Table 4

Comparison of frequencies for r/h = 20 (clamped edge)

p m Wp_em (rad/s) ®p_min (rad/s) p_iir (rad/s) Dp_min/ Dp_fem Op xir / Op_fem
0 1 7901.5 7857.2 8122.3 0.994 1.028
1 1 15890.0 15864.1 16903.5 0.998 1.064
2 1 25449.0 25186.8 27729.7 0.990 1.090
0 2 28802.0 28491.8 31620.9 0.989 1.098
1 2 42095.0 41794.6 48363.1 0.993 1.149
2 2 56658.0 55735.4 67249.2 0.984 1.187

FEA; o, _min the frequency calculated using the IPT-based model; w, «;: the frequency using the CPT-based
model; w,_gq, the flexural frequency of the one-layer plate obtained by 3D FEA; p is the wave number in the
circumferential direction; m is the index of the flexural modes for a certain wave number.
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Comparison of frequencies for ro/h = 10 (clamped edge)

P m Wp_em (rad/s) ®p_min (rad/s) ,p_xir (rad/s) Op_min/ Dp_fem Op xir/ Op_fem
0 1 29229.0 28816.8 32489.2 0.986 1.112
1 1 55213.0 54678.6 67614.1 0.990 1.225
2 1 84292.0 82297.6 110918.9 0.976 1.316
0 2 94232.0 91902.8 126483.5 0.975 1.342
1 2 130382.0 127771.0 193452.4 0.980 1.484
2 2 168570.0 163167.0 268996.8 0.968 1.596

As shown in Table 2, for a thin plate with a very large diameter—thickness ratio, such as ry/h = 60, the
frequencies from both CPT-based model and IPT-based model are in close agreement with the FEA results.
The IPT-based model produces results almost coincident with those of FEA while the results from CPT-
based model differs less than 2.3%. Tables 3-5 show that, as the diameter-thickness ratio increases, the
proposed IPT-based model provides results similar to those of FEA with a maximum difference of only
3.2%. However, the frequencies computed by the CPT-based model can be as large as 60% greater than
those by FEA (for the case of a thick plate with a diameter—thickness ratio of 10). Both the CPT-based and
IPT-based models give results closer to the FEA results at lower frequencies than they do at higher fre-
quencies. As shown in Table 5, the CPT-based model gives a frequency 59.6% greater than that of the FEA
in case of p =2 and m = 2 while it gives a value only 11.2% greater for the first mode. The CPT-based
model gives greater frequencies than the IPT-based model because the CPT neglects the effect of transverse
shear deformation and rotatory inertia and hence overestimates the frequencies. Fig. 3 shows frequency
ratios of the three-layered plates to those of one-layered plates for the following cases: ry/h = 60, 30, 20,
and 10. It seems that the piezoeffects are more obvious on plates with a higher diameter—thickness ratio
than on that with a lower one when piezoelectric layers of same thickness are attached.

5.2. Simply supported edges

Tables 6-9 compare the frequencies calculated for circular plates with simply supported edge by the IPT-
based model, the CPT-based model, and 3D FEA, where Table 6 is for ry = 0.6m, Table 7 for ry = 0.3m,

—u—r,/h=60
1.04 ® FG/h=30
e "— . ey, r,/h=20
1034 ¢ " . v—r,/h=10
1 ®
1.02 .
v

fem

1.01 o

e

I m

1.00 o

p_min

(G

0.99

0.98 -

©1)

Fig. 3. Effect of thickness of piezoelectric layers on frequencies to plates (clamped edge).

T
(1.1

T
(2.1)
(p,m)

(0,2)

(1.2)

(22)
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Table 6
Comparison of frequencies for ry/h = 60 (simply supported edge)
p m Dp_fem (rad/s) @p_min (rad/s) Dp_kir (rad/s) @p_ min/wp_fem wp-kir/wp_fem
0 1 435.2 435.1 435.6 1.000 1.001
1 1 1218.5 1221.4 1227.5 1.002 1.007
2 1 2242.4 2241.1 2262.4 0.999 1.009
0 2 2606.5 2605.5 2625.2 1.000 1.007
1 2 4221.0 4228.7 4282.4 1.002 1.015
2 2 6088.3 6079.5 6193.9 0.999 1.017
Table 7
Comparison of frequencies for ro/h = 30 (simply supported edge)
P m Dp_fem (rad/s) Wp_min (rad/s) Dp_kir (rad/s) Wp_ min/wp_fcm (Up_kil‘/wp_fcm
0 1 1735.3 1734.4 1742.5 1.000 1.004
1 1 4810.2 4828.6 4910.0 1.004 1.021
2 1 8792.1 8771.6 9049.7 0.998 1.029
0 2 10222.0 10197.9 10500.9 0.998 1.027
1 2 16316.0 16334.6 17129.7 1.001 1.050
2 2 23278.0 23148.1 24775.9 0.994 1.064
Table 8
Comparison of frequencies for ro/h = 20 (simply supported edge)
P m Dp_fem (rad/s) Dp_min (rad/s) Dp_kir (rad/s) Wp_ min/wp_fcm COp_kir/wp_fcm
0 1 3884.0 3879.5 3920.7 0.999 1.010
1 1 10623.0 10671.1 11047.4 1.005 1.040
2 1 19209.0 19114.5 20361.9 0.995 1.060
0 2 22301.0 22186.4 23627.1 0.995 1.060
1 2 34940.0 34903.9 38541.9 0.999 1.103
2 2 49098.0 48572.9 55745.7 0.989 1.135
Table 9
Comparison of frequencies for ro/h = 10 (simply supported edge)
P m Wp_fem (rad/s) @p_min (rad/s) Dp_kir (rad/s) (Up_mm/ Dp_fem wp_kir/ Dp_fem
0 1 15122.0 15059.1 15682.9 0.996 1.037
1 1 39205.0 39321.9 44189.7 1.003 1.127
2 1 67828.0 66843.9 81447.7 0.986 1.201
0 2 78080.0 76888.6 94508.6 0.985 1.210
1 2 115525.0 114276.4 154167.4 0.989 1.334
2 2 155227.0 151364.6 222982.9 0.975 1.436

Table 8 for ry = 0.2m, and Table 9 for ry = 0.1m. Fig. 4 plots frequency ratios of the three-layered plates to
those of one-layered plates for the four cases: ro/h = 60, 30, 20, and 10. The findings for the clamped plates
are reflected again by the simply supported cases.
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Fig. 4. Effect of thickness of piezoelectric layers on frequencies to plates (simply supported edge).

6. Conclusions

An analytical solution of free flexural vibration of a three-layered piezoelectric laminated circular
moderately thick plate is proposed based on the Mindlin’s plate theory for the cases where the electrodes on
the piezoelectric layers are shortly connected. The electric potential distribution across thickness of pi-
ezoelectric layers is modelled by a sinusoidal function. Hence the Maxwell equation is enforced. The
mathematical derivation was presented in detail. Numerical investigations were performed for plates with
various diameter—thickness ratios and with two kinds of boundary conditions, clamped edge and simply
supported edge. The validity of the solution based on IPT model for diameter—thickness ratios not less than
10 was verified by the 3D FEAs. The CPT-based model proved to be valid only for thin plates and diverge
from the FEA results for thick plates, particularly for high frequencies.
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Appendix A

The piezoelectric material is transversely isotropic material where for planes normal to the poling di-
rection, the material properties are equivalent in all directions. For plate problems, the 2D or 1D con-
stitutive relationships can be reduced from the 3D constitutive relationship. Without losing arbitrariness, a
coordinate system is adopted where the thickness direction of plate is in axis 3, as shown in Fig. 5. If the
piezoelectric material is poled in direction 3, its constitutive relationship is given by (Tiersten, 1969)

ag11 Cﬁ ClEz C1E3 0 0 0 €11 0 0 €31

022 sz Cﬁ C{E} 0 0 0 €22 0 0 €31 E1

033 _ Cﬁ C‘153 C:,% 0 0 0 €33 . 0 0 €33 E2 (Al)
o1 0 0 0 Ych-c5) o0 0 () o 0 o (Y2

o1 0 0 0 0 CEk 0 T3 es 0 0 .

023 0 0 0 0 0 CSES V23 0 €15 0
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3
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1
Fig. 5. Coordinate system for plates.

én
D, 00 0 0 es 0|7 En 0 0\ (E
Dyp={0 0 0 0 0 es)S 2o+ 0 21 0 E; 3, (A2)
D3 e €31 ées33 0 0 0 ;]2 0 0 533 E3

13

V23

where 011, 01, 033, 012, 013, and o3 are the stress components; &1, &, €3, 12, V13, and y,; the engineering
strain components; Dy, D,, and D; the electric displacements; Ey, E,, and Ej; the electric field intensities; C¥,
C%, CE, CE, and CL the elasticity moduli at constant electric field; e3;, e33, and e;s the piezoelectric strain
coefficients; and Z|;, and Z3; the dielectric constants.

Solving 33 = 0 for &3 = 0 gives

oy =2 p Cﬁ(s + &) (A.3)
3= L£s — =5 (en +én). .
Ch o Ch
Substituting Eq. (A.3) into Egs. (A.1) and (A.2) yields
an Zv151 Zv152 0 0 0 &1l 0 0 ey
02 ¢, ¢} 0 0 0 €2 0 0 ey E;
012 = 0 0 1 (EE _ fE ) 0 0 Y12 — 0 0 0 Ez s (A4)
2 (L 12
o1 0 0 0 CE 0 V13 e;s 0 0 E;
23 0 0 0 0 ct) Uis 0 as 0
én
D1 0 0 0 €15 0 & 511 0 0 E1
D2 = 0 0 0 0 €15 Y12 + 0 El] 70 E2 . (AS)
D3 e ées 0 0 0 Y13 0 0 533 E3
V23
where Efl, C|,, €31, and E3; are given by
= (Ch)? (CE)?
Cf] = CJIEI - ng ) sz = sz - C1§ )
33 33 (A6)
E 2
Gay — oay — 213 Tax = Faa 533
e = e3 5 €33, 233 =233+ .

C33 ) C3E3
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If the transverse shear stiffness is modified by a shear factor 2, Eq. (A.4) becomes

o1l 6151 ElEz 0 0 0 11 0 0 ey
02 ¢, C} 0 0 0 €2 0 0 ey E,
o2e=110 0 {C,-C, 0 0 tep—| 0 0 0 |SE
013 0 0 0 K2 CE, 0 713 es 0 0 Es
023 0 0 0 0 w2t ) s 0 es 0

Appendix B

Some coeflicients referred to in this paper are given as follows:

1 [e8 c
Ch 11
4hi(e;s — e
p— T +262CE R, Ay =2[Rp, + h (3K + 3hhy + B)p,],  As = 1(+31)
4hieis es 2Ey, 2nE5;
Ag=——, A7=2hp, +2hp,, Ag=—"—, Ao=——, =T —
6 T ’ P~ 1P s ejs +e; ? n(e1s + e31) 10 h%(eIS +e;)
P] = (D] +D2)(2h1€%5 —§11A3),
B 283 (D; + D
Py = A 2h1e§1+—33(h21 2
1
P = A4(A3§11 — 2}116%5) +A7§11(D1 + Ds),
Py = —A74451),
_ A7(Dy + Dy) + Agds|n*E -
Ps = 24:h(efs — &3,) — 4:(D 2)h% il By — A7455 0,
7T2A7A3§33
Ps=—755—,
hi
7I2A7A4§3';
p =100
hi
Dy +D
G = m, G, = As(A9As — Ag) + AcA1o(D1 + D»);
s = Zu(ouro), 5% = pZep(Biro)/ro, 5% = BiZg,(Biro),
(@) _ G/ Ay G (AoAs — AeAs)x; + (G1A7490” — G1A3A1g — A3)x,
2 A10A3A6G1 —A3A5 +A3A6 —A4A6CU2 A3 —A4C02
As(AgAs — AAs)x, + AsAgAr* — AgA 1045
+
Gy
AsAs(As — 1)x, + Aj0A? AD; + A1oDy — As)A700°
43 s(As )x, + A10A5 + (A1oDy + A10D2 5)A70 OCnZ,,,p(%nVo),

(A() — A3A9)<A3 - A4602)
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G1 (A9A3 — AéAg)Xﬁ + (G]A7A9(1)2 — G]A3A|0 —A3))Cn

@ _ pGa /Ay
A3 — 1‘14(1)2

Sn = A10A3A6G1 —A3A5 +A3A6 — A4A6(J)2

n As(A9As — AeAs)x, + AsAyA700* — AgA 1045
Gy

b

_ A';AS(Ag — l)xn +A10A§ + (AIODI +A10D2 — AS)A7G)2:| an(dnl"o)
(A6 —A3A9)(A3 —A4602) 140)

(a) _ ZEIIGZ(DIXH + Dyx, — A3 +A4w2)
A3 —A4Cl)2

[Gl (A9A3 — AGAg)xﬁ —+ (G1A7A9(}J2 — G1A3A10 — Ag)x,,
716151451410(1410143146(;1 — A3As + A3As — A4A6602)

4n T

As(AoA; — AgAg)x, + AsAoA700* — AeA 1045 _ A3As(4s — 1)x, + A4} + (A10Dy + A19Ds — As) 47007
Gz (A6 — A3A9)(A3 — A4w2)

2?11143 ,
7@*‘1’1 OCnan(O(nr())7 (n = 17273),

Sglr? = Zp(%u70),
(B.5)

7o r

Sg? _ 2p<ﬁlzép(ﬂlr0) _ Zép(ﬁ1r0) >, Sg}é) _ ﬁlzép(ﬁlr())v

G1 (A9A3 — A6Ag)x5 + (G1A7A9(D2 — G1A3A10 —Ag)x,,
A3 — A4OJ2

Jb) _ G>/4v
M A19A3A46Gy — A3As + A3Ag — AsAe?

+ A5(A9A3 - AéAg)x,, —|—A5A9A7CU2 - A6A10A3
G,

_A3A5(Ag — l)xn +A1()A§ —+ (AmD] +A10D2 —A5)A7(D2
(A6 — A3A9)(A3 — A4CO2)

2A1p2 615(A1 —|—A2)x,, —é;l(Ag —A4(D2) 2A10(n
72}1 n = - Zn n - Z, n
r(Z) P((x ro) + e1s — e3 P(OC Vo) 7o np(a I"())
Azey
72}1 %nl0 ),
ers —es| ol%r0)
®) PG/ Ao G1(AoA; — AsAs)x; 4 (G1A74900° — G1A3A410 — A3)x,
A3 — A4OJ2

S =
3n A10A3A6G1 —A3A5 +A3A6 —A4A6(}J2

n As(AoAs — AsAs)x, + AsAoA700* — AgA10A43
Gy
_ Asds(ds — 1)x, + A1043 + (A10D1 + A10Dy — As)A700? | Z,p(0taro)
(A(, —A';Ag)(A3 —A4602) 4]

)
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2

{ zglle/Alo (Dlx,, +D2Xn —A3 +A4w2 1 >
A10A3A6G1 —A3A5 +A3A6 —A4A(,602 TE€|5A5 2?11
% |:G1 (AQA'; —AGAg)xﬁ + (G1A7A90)2 — G1A3A10 — A3)x,,

A3 — A4CL)2
+A5(A9A3 — AgAs)x, + AsAoA700* — AgA1043
G

_ A3As(As — 1)x, + A1043 + (A1oD1 + 410Dy — AS)AWJT _ 28145

1o, Z (ot,7),
(AG _A3A9)(A3 _A4CO2) 7'5315145 + }OC np(OC 7‘0)

Sé(tlf))) :pZ()p(BIFO)/rov (I’l = 1a2a3);

2 2
S(C) o 2pG2/A10 G1 (A9A3 — A6A8)x,, + (G1A7A9(U — G1A3A10 — A3)x,,
" A10A3A6G1 — A1A5 +A1A6 — A4A60)2 A'; — A4Cl)2
2
n As(AoAs — AeAs)x, + AsAgA700° — AeA10A43
Gy
2 2 g
_ A3A45(Ag — 1)x, + A10d5 + (A10D1 + A10D2 — As)A70 O‘nan(“n’”O) _ Zp(0ato) (B.6)
2 ) :
(A6 — A3A9)(A3 — A4602) 140) }”0
(¢) _ 2 1 _ .
S36 = _FiZ6p(ﬁlr0)+2ﬂ126p(ﬁlr0)’ (}’l— 17273)1
C S13526532 — S12526533 — S13522536 + S12523536
cl1 = )
S12526531 — S11526532 — 12521536 + S11522536
S11526533 — S13526531 1 S13521536 — 11523536
Cor = , (B.7)
S12526831 — S11526532 — S12521536 1 S11522536
Coe — S13822831 — 512523831 — S13821832 + 511523532 + S12821833 — 511522533
c6 = .
S12526831 — S11526532 — S12521536 1 S11522536
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