
Analytical solution for free vibration of piezoelectric
coupled moderately thick circular plates

X. Liu, Q. Wang *, S.T. Quek

Department of Civil Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore

Received 23 July 2001; received in revised form 11 December 2001

Abstract

An analytical model for free vibration analysis of piezoelectric coupled moderately thick circular plate is presented

based on Mindlin’s plate theory for the cases where electrodes on the piezoelectric layers are shortly connected. The

distribution of electric potential along the thickness direction is simulated by a sinusoidal function. The differential

equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply sup-

ported edge. The detailed mathematical derivations are presented. Numerical investigations are performed for plates

with two surface-bonded piezoelectric layers for various diameter–thickness ratios and the results are verified by those

obtained from three-dimensional finite element analyses (ABAQUS 6.1). � 2002 Published by Elsevier Science Ltd.
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1. Introduction

Since piezoelectric material has been widely used as actuators and sensors in smart structures, a study on
modelling of a piezoelectric coupled structure is necessary and has been addressed by a lot of researchers.
Beams with surface-bonded or embedded piezoelectric sensors and actuators were first analysed (Bailey and
Hubbard, 1985; Crawley and de Luis, 1987). Different from the model based on a Euler beam assumption
proposed by Crawley and Anderson (1989), Aldraihem and Khdeir (2000) used two shear deformation
theories, the first-order beam theory (Timoshenko et al., 1974) and higher-order beam theory (Khdeir and
Reddy, 1997, 1999), to model smart beams with shear- and extension-mode piezoelectric actuators.
Piezoelectric coupled plate modelling and analysis were also keenly researched. A three-dimensional

solution of a plate is usually considered as an exact solution and used to verify the accuracy of the results
provided by approximate theories, such as a two-dimensional plate theory. Bisegna and Maceri (1996)
presented an exact three-dimensional solution for a simply supported transversely isotropic rectangular
homogeneous piezoelectric plate. Heyliger (1997) obtained exact solutions for the static behaviour of
laminated piezoelectric plates with simply support boundary condition. So and Leissa (1998) applied Ritz
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method in a three-dimensional analysis to obtain accurate frequencies for thick circular and annular plates
with completely free edges, using trigonometric functions in the circumferential co-ordinate and algebraic
polynomials in the radial and axial co-ordinates as the admissible functions. Even though three-dimen-
sional models represent the plate behaviour more exactly than approximate methods, such as two-
dimensional plate theories, they can only be solved analytically for some limited boundary conditions.
Due to their simplicity, two-dimensional models are still the most commonly used plate models. Refining

the classical plate theory (CPT) (Love, 1944), Fernandes and Pouget (2001) and Almajid et al. (2001)
performed analyses for thin piezoelectric laminated composites. Huang and Wu (1996) proposed two kinds
of modification to the first-order shear deformation theory (Whitney and Pagano, 1970) to predict the static
behaviour of hybrid multi-layered piezoelectric plates. To investigate the free vibration of piezoelectric
laminate circular plates, Heyliger and Ramirez (2000) combined approximations of one-dimensional finite
elements in the thickness direction and analytic functions in the plane within the context of the Ritz
method. Yu (1995) derived equations of piezoelectric plates accounting for large deflections on the basis of
CPT (Love, 1944) and refined plate theory (Mindlin, 1984). As early as 1952, Mindlin (1952) gave an
analytical solution for forced flexural vibration of piezoelectric crystal plates. But no piezoeffects will be
obtained since a linear distribution of electric potential is assumed across the thickness of piezoelectric plate
if this model is applied to free vibration with two shortly connected electrodes bonded to the surfaces of
piezoelectric plate.
The finite element method was also applied to analyse piezoelectric coupled structures (Hwang and Park,

1993; Chandrashekhara and Agarwal, 1993; Kim et al., 1996; Lam et al., 1997; Sheikh et al., 2001). Wang
et al. (2000) proposed a two-dimensional finite element model by modifying the electric potential expansion
proposed by Mindlin (1955, 1972) to satisfy the constant electric potential distribution on the surface with
electrode. Three-dimensional finite element method accounting for piezoelectric materials has been im-
plemented by commercial finite element analysis (FEA) codes ABAQUS (HKS Inc., 1993) and ANSYS
(Swanson Inc., 1993). The finite element method is a powerful tool but sometimes an analytical solution is
still needed to get a deep and clear understand of the mechanics of structural vibration.
There is a special interest in the modelling for piezoelectric coupled circular and annular plates since

piezoelectric material can be used as actuator in ultrasonic motor (Lebrun et al., 1997). Hagood and
McFarland (1995) developed an analytical model for a circular plate with a piezoelectric actuator by as-
suming that the distribution of electric potential is uniform in the radial direction. In fact, many published
works on the mechanics model for the analysis of the piezoelectric coupled beams and plates adopted the
assumption that the distribution of electric potential in the longitudinal direction of the piezoelectric layer is
uniform and that in its thickness direction is linear, which may violate the Maxwell static electricity
equation (Wang and Quek, 2000). Wang et al. (2001) assumed a quadratic distribution of electric potential
across the thickness, which was verified by a 3-D FEA, to obtain the analytical solution for free vibration
analysis of a piezoelectric coupled circular plate. Their analytical solution is applicable to only thin plates
based on CPT.
In this paper, an analytical model for the free vibration analysis of piezoelectric coupled moderately

thick circular plate is proposed. The displacement assumption follows the improved plate theory (IPT)
(Mindlin, 1951a, 1951b). A sinusoidal function is adopted to describe the distribution of electric potential
along the thickness direction. It is noted that the sinusoidal function has a similar shape to the quadratic
one, but can make the governing equations simpler. The Maxwell static electricity equation is taken as
one of the governing equations. The differential equations of motion are solved for two boundary condi-
tions: clamped edge and simply supported edge and detailed mathematical derivations are presented.
Numerical investigations are performed for plates bonded by two piezoelectric layers of various diameter–
thickness ratios and the results are verified by the results of three-dimensional finite element analyses using
ABAQUS 6.1. The results obtained by the CPT-based model (Wang et al., 2001) are also presented for
comparison.
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2. Displacement and electric potential field models for circular plate

Fig. 1 shows the cross-section of a laminated circular plate comprising one host layer and two piezo-
electric layers. Both top and bottom surfaces of each piezoelectric layer are fully covered by electrodes that
are shortly connected. The plate has a radius of r0 and the thickness of the host layer and each piezoelectric
layer are 2h and h1, respectively. The cylindrical coordinate system is adopted where the r–h plane is co-
incident with the mid-plane of the undeformed plate.

2.1. Displacement field based on Mindlin’s thick plate model

When thick plates are considered, the effect of shear deformation and rotary inertia cannot be omit-
ted with negligible error. According to Mindlin (1951a,b) displacement fields of the plate are given
by

uzðr; h; z; tÞ ¼ wðr; h; tÞ; ð1Þ

urðr; h; z; tÞ ¼ zwrðr; h; tÞ; ð2Þ

uhðr; h; z; tÞ ¼ zwhðr; h; tÞ; ð3Þ
where uz, ur, and uh are the displacements of the plate in the transverse, radial, and tangential direction,
respectively; w is the transverse displacement of the mid-plane; and wr and wh are the rotations of vertical
lines perpendicular to the mid-plane, measured on the z–r and z–h planes, respectively, as shown in Fig. 2. It
is assumed that (a) there is no ‘‘thickness stretch’’ of the plate; (b) straight material lines that are per-
pendicular to the mid-plane in the undeformed state remain straight in the deformed state even though they
may not remain perpendicular to the mid-plane.
The poling direction of the piezoelectric material is assumed to be in the z-direction. When external

electric potential is applied across the piezoelectric layer, a differential strain is induced which results in the
bending of the plate. The strain of the host plate and piezoelectric layer in the radial and tangential di-
rections and the shear component are given by

err ¼
our

or
¼ z

owr

or
; ð4Þ

Fig. 1. Cross-section of a circular plate mounted with two piezoelectric layers.
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ehh ¼
ur

r
þ ouh

roh
¼ z

wr

r

�
þ owh

roh

�
; ð5Þ

crh ¼
our

roh
þ ouh

or
� uh

r
¼ z

owr

roh

�
� wh

r
þ owh

or

�
; ð6Þ

crz ¼
our

oz
þ ouz

or
¼ wr þ

ow
or

; ð7Þ

chz ¼
ouh

oz
þ ouz

roh
¼ wh þ

ow
roh

: ð8Þ

The stress components in the host plate are expressed as

rð1Þ
rr ¼ E

1� l2
ðerr þ lehhÞ ¼

zE
1� l2

l
wr

r

�
þ l

owh

roh
þ owr

or

�
; ð9Þ

rð1Þ
hh ¼ E

1� l2
ðehh þ lerrÞ ¼

zE
1� l2

wr

r

�
þ owh

roh
þ l

owr

or

�
; ð10Þ

sð1Þrh ¼ E
2ð1þ lÞ crh ¼

zE
2ð1þ lÞ

owh

or

�
� wh

r
þ owr

roh

�
; ð11Þ

sð1Þrz ¼ j2
E

2ð1þ lÞ crz ¼ j2
E

2ð1þ lÞ wr

�
þ ow

or

�
; ð12Þ

sð1Þhz ¼ j2
E

2ð1þ lÞ chz ¼ j2
E

2ð1þ lÞ wh

�
þ ow

roh

�
; ð13Þ

where the superscript (1) represents the variable in the host structure; E and l are the Young’s modulus and
Poisson ratio of the host material; and j is the shear factor employed in Mindlin’s plate model (Mindlin,
1951a, 1951b) to correct for the shear modulus, chosen as p=

ffiffiffiffiffi
12

p
here.

The stress components in piezoelectric layer can be written as

rð2Þ
rr ¼ C

E
11err þ C

E
12ehh � �ee31Ez; ð14Þ

Fig. 2. Deformation of plate.
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rð2Þ
hh ¼ C

E
12err þ C

E
11ehh � �ee31Ez; ð15Þ

sð2Þrh ¼ 1
2
ðCE

11 � C
E
12Þcrh; ð16Þ

sð2Þrz ¼ j2CE
55crz þ e15Er; ð17Þ

sð2Þhz ¼ j2CE
55chz þ e15Eh; ð18Þ

where the superscript (2) represents the variable in the piezoelectric material; C
E
11, C

E
12 and �ee31 are the re-

duced material constants of the piezoelectric medium (see Appendix A), and are given by C
E
11 ¼ CE

11�
ððCE

13Þ
2
=CE

33Þ, C
E
12 ¼ CE

12 � ððCE
13Þ

2
=CE

33Þ and �ee31 ¼ e31 � ðCE
13e33=C

E
33Þ; CE

11, C
E
33, C

E
12 and CE

55 are the moduli of
elasticity at constant electric field; e31 and e15 are the piezoelectric electric constants; and Er, Eh and Ez are
the electric field intensities in the radial, tangential and transverse direction, respectively.

2.2. Distribution of electric potential in the piezoelectric layer

For free vibration analysis with the electrodes on each piezoelectric layer short-circuited, a quadratic
function was proposed and verified using FEA by Wang et al. (2001) to describe the electric potential
distribution across the thickness of piezoelectric layers in piezoelectric coupled circular plates. In this paper
a sinusoidal function is adopted instead so that a simpler governing equations can be obtained. The electric
potential at any point of the piezoelectric layers is assumed as

/ðr; h; z; tÞ ¼
uðr; h; tÞ sin pðz�hÞ

h1
; h6 z6 h þ h1;

uðr; h; tÞ sin pð�z�hÞ
h1

; �h � h16 z6 � h;

(
ð19Þ

where z is measured from the mid-plane of the plate in the transverse direction; h and h1 are the thickness of
the host layer and the piezoelectric layer, respectively; u is the electric potential on the mid-surface of the
piezoelectric layer. It is to be noted that the assumed potential function satisfies the boundary conditions
that electric potential vanishes at the internal surfaces z ¼ �h and the external surfaces z ¼ �ðh þ h1Þ. The
sinusoidal function employed here has a similar shape to that of the quadratic function adopted by Wang
et al. (2001).

3. Equations for free vibration analysis of piezoelectric coupled circular plate

Based on the assumption of electric potential distribution across the thickness direction shown in (19),
the components of electric field intensity E and electric flux density D can be written as

Er ¼ � o/
or

¼ � ou
or

sin
pðz � hÞ

h1
; ð20Þ

Eh ¼ � o/
roh

¼ � ou
roh

sin
pðz � hÞ

h1
; ð21Þ

Ez ¼ � o/
oz

¼ � pu
h1

cos
pðz� hÞ

h1
; ð22Þ

Dr ¼ e15crz þ N11Er ¼ e15 wr

�
þ ow

or

�
� N11

ou
or

sin
pðz � hÞ

h1
; ð23Þ
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Dh ¼ e15chz þ N11Eh ¼ e15 wh

�
þ ow

roh

�
� N11

ou
roh

sin
pðz � hÞ

h1
; ð24Þ

Dz ¼ �ee31ðerr þ ehhÞ þ N33Ez ¼ z�ee31
owr

or

�
þ wr

r
þ owh

roh

�
� N33

pu
h1

cos
pðz � hÞ

h1
; ð25Þ

where Dr, Dh and Dz are the corresponding electric displacement (electric flux density) components; N11 and
N33 are the reduced dielectric constant of the piezoelectric layer, and are given by N11 ¼ N11,
N33 ¼ N33 þ e233=C

E
33 (see Appendix A); and N11 and N33 are the dielectric constants of the piezoelectric layer.

The resultant moments caused by the stresses are expressed, in view of Eqs. (9)–(18), as

Mrr ¼
Z hþh1

�h�h1

zrrr dz ¼
Z h

�h
zrð1Þ

rr dz þ 2

Z hþh1

h
zrð2Þ

rr dz

¼ ðD1 þ D2Þ
owr

or
þ lD1

 
þ C

E
12

C
E
11

D2

!
wr

r

�
þ owh

roh

�
� 4h1�ee31

p
u; ð26Þ

Mhh ¼
Z hþh1

�h�h1

zrhh dz ¼
Z h

�h
zrð1Þ

hh dz þ 2

Z hþh1

h
zrð2Þ

hh dz

¼ lD1

 
þ C

E
12

C
E
11

D2

!
owr

or
þ ðD1 þ D2Þ

wr

r

�
þ owh

roh

�
� 4h1�ee31

p
u; ð27Þ

Mrh ¼
Z hþh1

�h�h1

zsrh dz ¼
Z h

�h
zsð1Þrh dz þ 2

Z hþh1

h
zsð2Þrh dz ¼ A1

owr

roh

�
þ owh

or
� wh

r

�
; ð28Þ

where D1, D2 and A1 are constants related to plate stiffness and are given by

D1 ¼
2Eh3

3ð1� l2Þ ; D2 ¼ 2
3
h1ð3h2 þ 3hh1 þ h21ÞC

E
11 and A1 ¼

1

2
ð1
"

� lÞD1 þ 1

 
� C

E
12

C
E
11

!
D2

#
:

The resultant shear forces are expressed as

Qr ¼
Z hþh1

�h�h1

srz dz ¼
Z h

�h
sð1Þrz dz þ 2

Z hþh1

h
sð2Þrz dz ¼ A3

ow
or

�
þ wr

�
� 4h1e15

p
ou
or

; ð29Þ

Qh ¼
Z hþh1

�h�h1

shz dz ¼
Z h

�h
sð1Þhz dz þ 2

Z hþh1

h
sð2Þhz dz ¼ A3

ow
roh

�
þ wh

�
� 4h1e15

p
ou
roh

; ð30Þ

where A3 ¼ j2ðEh=ð1þ lÞÞ þ 2j2CE
55h1.

It is to be noted that Mrr, Mrh, Mhh, Qr and Qh must satisfy the following dynamic equilibrium equations

oQr

or
þ oQh

roh
þ Qr

r
�

Z h

�h
q1

o2uz

ot2
dz

�
þ 2

Z hþh1

h
q2

o2uz

ot2
dz
�

¼ 0; ð31Þ

oMrr

or
þ oMrh

roh
þMrr � Mhh

r
� Qr �

Z h

�h
q1z

o2ur

ot2
dz

�
þ 2

Z hþh1

h
q2z

o2ur

ot2
dz
�

¼ 0; ð32Þ

oMrh

or
þ oMhh

roh
þ 2Mrh

r
� Qh �

Z h

�h
q1z

o2uh

ot2
dz

�
þ 2

Z hþh1

h
q2z

o2uh

ot2
dz
�

¼ 0; ð33Þ

where q1 and q2 are the material densities of the host material and piezoelectric layer, respectively.
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The electric variables must also satisfy the Maxwell’s equations which require that the divergence of the
electric flux density vanishes at any point within the piezoelectric layers. In the two-dimensional analysis of
plate, this condition can be satisfied approximately by enforcing that the integration of the divergence of the
electric flux density across the thickness of the piezoelectric layers vanishes all over the plate, namely for
any r and h,Z hþh1

h

oðrDrÞ
ror

�
þ oDh

roh
þ oDz

oz

�
dz ¼ 0: ð34Þ

Substituting Eqs. (26)–(30) into Eqs. (31)–(33) and Eqs. (23)–(25) into Eq. (34) yield the equations of
motion,

A3ðDw þ WÞ � A6Du � A7
o2w
ot2

¼ 0; ð35Þ

A1Dwr þ A2
oðrWÞ
ror

� A3 wr

�
þ ow

or

�
� ðD1 þ D2Þ

wr

r2

�
þ owh

r2 oh

�
� A2

owr

ror
� A1

owh

r2 oh
þ A5

ou
or

� A4
o2wr

ot2
¼ 0;

ð36Þ

A1Dwh þ A2
oW
roh

� A3 wh

�
þ ow

roh

�
þ 2A1

owr

r2 oh

�
� wh

2r2

�
þ A5

ou
roh

� A4
o2wh

ot2
¼ 0; ð37Þ

� 2h1N11

p
Du þ h1e15Dw þ 2pN33

h1
u þ h1ðe15 þ �ee31ÞW ¼ 0; ð38Þ

where D is the Laplace operator and in polar coordinate system is given by

o2

or2
þ o

ror
þ o2

r2 oh2

W is a function of wr and wh, given by

W ¼ owr

or
þ wr

r
þ owh

roh
; ð39Þ

A1, A2, A3, A4, A5, A6 and A7 are constants governed by material properties and structural geometry, given in
Appendix B.

4. Solutions for piezoelectric coupled circular plates

In the four differential equation (35)–(38) there are four independent variables, w, wr, wh and u that need
to be solved. The solution procedure is described hereafter. Note that the variable W is not independent but
a function of wr and wh (see Eq. (39)).

4.1. Solutions for transverse displacement w

Eliminating wr, wh and u from Eqs. (35)–(38) yields an uncoupled differential equation in terms of w
only, namely,

X. Liu et al. / International Journal of Solids and Structures 39 (2002) 2129–2151 2135



P1DDDw þ P2DDw þ P3DD
o2w
ot2

� �
þ P4D

o4w
ot4

� �
þ P5D

o2w
ot2

� �
þ P6

o2w
ot2

þ P7
o4w
ot4

¼ 0; ð40Þ

where the coefficients, P1, P2, P3, P4, P5, P6 and P7, are given in Appendix B. The solution of wðr; h; tÞ for
wave propagation in the h-direction can be written as

wðr; h; tÞ ¼ ŵwðrÞeiðph�xtÞ; ð41Þ

where ŵwðrÞ is the amplitude of the z-direction displacement and a function of radial distance only; x is the
natural frequency of the plate; and p is the wave number in the h-direction. Substituting Eq. (41) into Eq.
(40) and cancelling eiðph�xtÞ term gives

P1DDDŵw þ ðP2 � P3x2ÞDDŵw þ ðP4x4 � P5x2ÞDŵw þ ðP7x4 � P6x2Þŵw ¼ 0; ð42Þ

where D is a operator defined as

D ¼ d2

dr2
þ d

rdr
� p2

r2
:

Transforming Eq. (42) into the form

ðD � x1ÞðD � x2ÞðD � x3Þŵw ¼ 0; ð43Þ

where x1, x2 and x3 are the three roots of the cubic equation,

P1x3 þ ðP2 � P3x2Þx2 þ ðP4x4 � P5x2Þx þ P7x4 � P6x2 ¼ 0: ð44Þ

The solution of Eq. (42) takes the form of

ŵw ¼ ŵw1 þ ŵw2 þ ŵw3 ð45Þ

provided ŵw1, ŵw2 and ŵw3 are solutions of the following three Bessel’s equations, respectively:

ðD � x1Þŵw1 ¼ 0;

ðD � x2Þŵw2 ¼ 0;

ðD � x3Þŵw3 ¼ 0;

ð46Þ

The transformation x ¼ y þ ðP3x2 � P2Þ=3P1 eliminates the second-order term of Eq. (44), resulting in

y3 þ by þ c ¼ 0; ð47Þ

where

b ¼ P4x4 � P5x2

P1
� ðP2 � P3x2Þ2

3P 21
; c ¼ x2ðP7x2 � P6Þ

P1
þ x2ðP5 � P4x2ÞðP2 � P3x2Þ

3P 21
þ 2ðP2 � P3x2Þ3

27P 31
:

ð48Þ

The discriminant of the cubic equation is given by

d ¼ c
2


 �2
þ b

3

� �3
: ð49Þ

In practice, d < 0 is usually satisfied. Thus, according to Cardano’s formula (Speigel, 1999), the charac-
teristic equation (44) has three distinct real roots given by
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x1 ¼ 2S cos
c
3
þ P3x2 � P2

3P1
;

x2 ¼ 2S cos
c þ 2p
3

þ P3x2 � P2
3P1

;

x3 ¼ 2S cos
c þ 4p
3

þ P3x2 � P2
3P1

;

ð50Þ

where

S ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 22 þ ð3P1P5 � 2P2P3Þx2 þ ðP 23 � 3P1P4Þx4

P 21

s
; c ¼ arccos

264� c

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ð� b

3
Þ3

q
375:

In view of non-singularity of ŵw at r ¼ 0, the solution of Eq. (42) can be expressed as

ŵw ¼
X3
n¼1

CnZnpðanrÞ; ð51Þ

where a1 ¼
ffiffiffiffiffiffiffi
jx1j

p
, a2 ¼

ffiffiffiffiffiffiffi
jx2j

p
and a3 ¼

ffiffiffiffiffiffiffi
jx3j

p
, Cn are constants and

ZnpðanrÞ ¼
JpðanrÞ; xn < 0
IpðanrÞ; xn > 0

�
ðn ¼ 1; 2; 3Þ ð52Þ

in which JpðairÞ is the Bessel function of first type and IpðairÞ is the modified Bessel function of first type. It
should be noted that the second type Bessel functions become singular at r ¼ 0 and have been omitted from
the solution.

4.2. Solutions for rotations wr and wh

If the rotations wr and wh are expressed in terms of the potential functions Uðr; h; tÞ and Hðr; h; tÞ which
give rise to areal dilatation and rotation

wr ¼
oU
or

þ oH
roh

;

wh ¼
oU
roh

� oH
or

;

ð53Þ

Eqs. (36) and (37) become

o

or
ðD1

�
þ D2ÞDU � A3U � A4

o2U
ot2

� A3w þ A5u
�
þ o

roh
A1DH
�

� A3H � A4
o2H
ot2

�
¼ 0; ð54Þ

o

roh
ðD1

�
þ D2ÞDU � A3U � A4

o2U
ot2

� A3w þ A5u
�
� o

or
A1DH
�

� A3H � A4
o2H
ot2

�
¼ 0: ð55Þ

If applying the operator o=roh to Eq. (54), ð1=r þ ðo=rorÞÞ to Eq. (55), and subtracting, we obtain a
decoupled equation in terms of H,

D A1DH
�

� A3H � A4
o2H
ot2

�
¼ 0: ð56Þ

Similarly, application of the operator ð1=r þ ðo=rorÞÞ to Eq. (54), o=roh to Eq. (55), and adding the results
yield another decoupled equation free of H,
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D ðD1

�
þ D2ÞDU � A3U � A4

o2U
ot2

� A3w þ A5u
�
¼ 0: ð57Þ

It is assumed that U, H, and u take the form

Uðr; h; tÞ ¼ bUUðrÞeiðph�xtÞ;

Hðr; h; tÞ ¼ bHH ðrÞeiðph�xtÞ;

uðr; h; tÞ ¼ ûuðrÞeiðph�xtÞ;

ð58Þ

where ûuðrÞ, bHH ðrÞ, and bUUðrÞ are amplitudes of uðr; h; tÞ, Hðr; h; tÞ and Uðr; h; tÞ, respectively. Substituting
Eqs. (41) and (58) into Eqs. (35), (56), (57), and (38) reduces to

A3DbUU þ A3Dŵw þ A7x2ŵw � A6Dûu ¼ 0; ð59Þ

A1D bHH � ðA3 � A4x2Þ bHH ¼ 0; ð60Þ

ðD1 þ D2ÞDbUU � ðA3 � A4x2ÞbUU � A3ŵw þ A5ûu ¼ 0; ð61Þ

DbUU þ A8Dŵw � A9Dûu þ A10ûu ¼ 0; ð62Þ

where the coefficients, A8, A9, and A10, are given in Appendix B. Solving Eq. (60) for bHH gives

bHH ðrÞ ¼ C6aZ6pðb1rÞ þ C7aZ7pðb1rÞ; ð63Þ

where C6a and C7a are arbitrary constants;

b1 ¼
ffiffiffiffiffiffiffi
F1j j

p
; F1 ¼

A3 � A4x2

A1
; ð64Þ

Z6pðb1rÞ ¼
Jpðb1rÞ; F1 < 0;
Ipðb1rÞ; F1 > 0;

�
Z7pðb1rÞ ¼

Ypðb1rÞ; F1 < 0;
Kpðb1rÞ; F1 > 0;

� ð65Þ

Jp and Yp are the Bessel functions of the first kind and the second kind, respectively; and Ip and Kp are the
modified Bessel functions of the first kind and the second kind, respectively. To avoid singularity at r ¼ 0,
C7a ¼ 0. Thus, Eq. (63) is reduced tobHH ðrÞ ¼ C6aZ6pðb1rÞ: ð66Þ
Solving Eqs. (59), (61), and (62) for bUU yields

bUUðrÞ ¼ G2=A10
A10A3A6G1 � A3A5 þ A3A6 � A4A6x2

G1ðA9A3 � A6A8Þ
A3 � A4x2

DDŵw
�

þ A5ðA9A3 � A6A8Þ
G2

�

þ G1ðA7A9x2 � A3A10Þ � A3
A3 � A4x2

� A3A5ðA8 � 1Þ
ðA6 � A3A9ÞðA3 � A4x2Þ

�
Dŵw

þ A5A9A7x2 � A6A10A3
G2

�
� A10A23 þ ðA10D1 þ A10D2 � A5ÞA7x2

ðA6 � A3A9ÞðA3 � A4x2Þ

�
ŵw
�

ð67Þ
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Substituting Eqs. (51), (58), (66) and (67) into Eq. (53) and replacing iC6a by C6 yields

wrðr; h; tÞ

¼ G2=A10
A10A3A6G1 � A3A5 þ A3A6 � A4A6x2

X3
n¼1

G1ðA9A3 � A6A8Þx2n þ ðG1A7A9x2 � G1A3A10 � A3Þxn

A3 � A4x2

�(

þ A5ðA9A3 � A6A8Þxn þ A5A9A7x2 � A6A10A3
G2

� A3A5ðA8 � 1Þxn þ A10A23 þ ðA10D1 þ A10D2 � A5ÞA7x2

ðA6 � A3A9ÞðA3 � A4x2Þ

�
CnanZ 0

npðanrÞ þ
C6pZ6pðb1rÞ

r

)
eiðph�xtÞ;

ð68Þ

whðr; h; tÞ

¼ pG2=A10
A10A3A6G1 � A3A5 þ A3A6 � A4A6x2

X3
n¼1

G1ðA9A3 � A6A8Þx2n þ ðG1A7A9x2 � G1A3A10 � A3Þxn

A3 � A4x2

�(

þ A5ðA9A3 � A6A8Þxn þ A5A9A7x2 � A6A10A3
G2

� A3A5ðA8 � 1Þxn þ A10A23 þ ðA10D1 þ A10D2 � A5ÞA7x2

ðA6 � A3A9ÞðA3 � A4x2Þ

�
CnZnpðanrÞ

r
þ C6b1Z

0
6pðb1rÞ

)
eiðph�xtÞ;

ð69Þ

where the coefficients, G1 and G2, are given in Appendix B.

4.3. Solutions for electric potential u

Solving Eq. (61) for ûuðrÞ yields

ûuðrÞ ¼ �D1 þ D2

A5
DbUUðrÞ þ A3 � A4x2

A5
bUUðrÞ þ A3

A5
ŵwðrÞ: ð70Þ

Substituting Eqs. (51), (67), and (70) into Eq. (58) results in

uðr; h; tÞ

¼
X3
n¼1

G2ðA3 � A4x2 � D1xn � D2xnÞ
A5A10ðA10A3A6G1 � A3A5 þ A3A6 � A4A6x2Þ

G1ðA9A3 � A6A8Þx2n þ ðG1A7A9x2 � G1A3A10 � A3Þxn

A3 � A4x2

��
þ A5ðA9A3 � A6A8Þxn þ A5A9A7x2 � A6A10A3

G2

� A3A5ðA8 � 1Þxn þ A10A23 þ ðA10D1 þ A10D2 � A5ÞA7x2

ðA6 � A3A9ÞðA3 � A4x2Þ

�
þ A3

A5

�
CnZnpðanrÞeiðph�xtÞ: ð71Þ

4.4. Determination of frequencies by boundary conditions

In the proceeding sections we obtained explicit expressions for transverse displacement wðr; h; tÞ, rota-
tions wrðr; h; tÞ and whðr; h; tÞ, and electric potential uðr; h; tÞ, which are all functions of the frequency x. To
determine the frequency, the boundary conditions must be employed. Two kinds of boundary conditions,
clamped edge and simply supported edges, are addressed.
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(a) Clamped edge
For clamped edge at r ¼ r0, both the transverse displacement w and rotations wr and wh vanish, namely,

wðr0; h; tÞ ¼ 0;

wrðr0; h; tÞ ¼ 0;

whðr0; h; tÞ ¼ 0;

ð72Þ

where r0 is radius of the plate. If the plate is isolated at the edge, the electrical flux conservation equation is
given byZ hþh1

h
Drðr0; h; tÞdz ¼ 0: ð73Þ

Substituting the solutions obtained in the proceeding sections for w, wr, wh, and u into Eqs. (72) and (73)
and some simplifications yield

sðaÞ11 sðaÞ12 sðaÞ13 0

sðaÞ21 sðaÞ22 sðaÞ23 sðaÞ26
sðaÞ31 sðaÞ32 sðaÞ33 sðaÞ36
sðaÞ41 sðaÞ42 sðaÞ43 0

0BBB@
1CCCA

C1

C2

C3

C6

0BB@
1CCA ¼

0
0
0
0

0BB@
1CCA; ð74Þ

where sðaÞij , s
ðaÞ
26 and sðaÞ36 , ði ¼ 1; 2; 3; 4; j ¼ 1; 2; 3Þ, are functions of the frequencies, given in Appendix B. Non-

trivial solutions for C1, C2, C3, and C6 implies that the determinant of the coefficients matrix of Eq. (74)
vanishes, namely,

sðaÞ11 sðaÞ12 sðaÞ13 0

sðaÞ21 sðaÞ22 sðaÞ23 sðaÞ26
sðaÞ31 sðaÞ32 sðaÞ33 sðaÞ36
sðaÞ41 sðaÞ42 sðaÞ43 0

"""""""""

""""""""" ¼ 0: ð75Þ

Solving Eq. (75) for x gives the frequencies of flexural free vibrations.

(b) Simply supported edge (hard type)
At the edge r ¼ r0, the transverse displacement w, the resist bending moment in the z–r planeMrr, and the

rotation in tangent plane wh vanish, namely,

wðr0; h; tÞ ¼ 0;

Mrrðr0; h; tÞ ¼ 0;

whðr0; h; tÞ ¼ 0:

ð76Þ

Of course, Eq. (73) should also be satisfied. If the solutions for w, wr, wh, and u are substituted into Eqs.
(76) and (73), four linear equations in terms of the arbitrary constants, C1, C2, C3, and C6, are obtained,
namely,

sðbÞ11 sðbÞ12 sðbÞ13 0

sðbÞ21 sðbÞ22 sðbÞ23 sðbÞ26
sðbÞ31 sðbÞ32 sðbÞ33 sðbÞ36
sðbÞ41 sðbÞ42 sðbÞ43 sðbÞ46

0BBB@
1CCCA

C1

C2

C3

C6

0BB@
1CCA ¼

0
0
0
0

0BB@
1CCA; ð77Þ

where the coefficients, sðbÞij , s
ðbÞ
26 , s

ðbÞ
36 and sðbÞ46 , ði ¼ 1; 2; 3; 4; j ¼ 1; 2; 3Þ, are given in Appendix B. To obtain

non-trivial solutions for C1, C2, C3, and C6, the determinant of the coefficients matrix of Eq. (77) must
vanish, from which the frequencies, x, can be obtained.
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(c) Simply supported edge (soft type)
At the edge r ¼ r0, the transverse displacement w, the resist bending moment in the z–r plane and the z–h

plane, Mrr and Mrh (instead of wh), vanish, namely,

wðr0; h; tÞ ¼ 0;

Mrrðr0; h; tÞ ¼ 0;

Mrhðr0; h; tÞ ¼ 0:

ð78Þ

Obviously Eq. (73) should be satisfied again. If the solutions for w, wr, wh, and u are substituted into Eqs.
(78) and (73), Eq. (77) is obtained again, but the coefficients, sðbÞ3n , s

ðbÞ
36 , n ¼ 1, 2, 3, are replaced by sðcÞ3n and sðcÞ36

which are defined in Appendix B. The frequencies, x, can be obtained again from the condition that the
determinant of the coefficients matrix must vanish.

4.5. Mode shapes

It is noted that only three of the four equations in Eqs. (74) or (77) are linearly independent.
Thus, C1, C2, and C6 can be expressed in terms of C3 by solving the first equations of Eqs. (74) or (77), as
follows:

C1 ¼ CC1C3;

C2 ¼ CC2C3;

C6 ¼ CC6C3;

ð79Þ

where the coefficients, CC1, CC2, and CC6, are given in Appendix B.
Substituting Eq. (79) into the solutions for w, wr, wh, and u, which we obtained in the proceeding

sections, yield the mode shapes of w, wr, wh, and u, respectively.
The normal modes of the transverse displacement �wwðr; hÞ are given by

�wwðr; hÞ ¼
X3
n¼1

CCnZnpðanrÞ
sinðphÞ
cosðphÞ

� �
; ð80Þ

where to get a close form we let CC3 ¼ 1; CC1 and CC2 are given in Appendix B.
The normal modes of the rotation in the z–r plane �wwrðr; hÞ are given by

wrðr; h; tÞ

¼ G2=A10
A10A3A6G1 � A3A5 þ A3A6 � A4A6x2

X3
n¼1

G1ðA9A3 � A6A8Þx2n þ ðG1A7A9x2 � G1A3A10 � A3Þxn

A3 � A4x2

�(

þ A5ðA9A3 � A6A8Þxn þ A5A9A7x2 � A6A10A3
G2

� A3A5ðA8 � 1Þxn þ A10A23 þ ðA10D1 þ A10D2 � A5ÞA7x2

ðA6 � A3A9ÞðA3 � A4x2Þ

�
CCnanZ 0

npðanrÞ þ
CC6pZ6pðb1rÞ

r

)



sinðphÞ

cosðphÞ

 !
: ð81Þ
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The normal modes of the rotation in the tangent plane whðr; hÞ are given by

whðr; h; tÞ

¼ pG2=A10
A10A3A6G1 � A3A5 þ A3A6 � A4A6x2

X3
n¼1

G1ðA9A3 � A6A8Þx2n þ ðG1A7A9x2 � G1A3A10 � A3Þxn

A3 � A4x2

�(

þ A5ðA9A3 � A6A8Þxn þ A5A9A7x2 � A6A10A3
G2

� A3A5ðA8 � 1Þxn þ A10A23 þ ðA10D1 þ A10D2 � A5ÞA7x2

ðA6 � A3A9ÞðA3 � A4x2Þ

�
CCnZnpðanrÞ

r
þ CC6b1Z

0
6pðb1rÞ

)



cosðphÞ
� sinðphÞ

� �
: ð82Þ

The normal modes of the electric potential �uuðr; hÞ are given by

uðr; h; tÞ ¼
X3
n¼1

G2ðA3 � A4x2 � D1xn � D2xnÞ
A5A10ðA10A3A6G1 � A3A5 þ A3A6 � A4A6x2Þ

�

 G1ðA9A3 � A6A8Þx2n þ ðG1A7A9x2 � G1A3A10 � A3Þxn

A3 � A4x2

�
þ A5ðA9A3 � A6A8Þxn þ A5A9A7x2 � A6A10A3

G2

� A3A5ðA8 � 1Þxn þ A10A23 þ ðA10D1 þ A10D2 � A5ÞA7x2

ðA6 � A3A9ÞðA3 � A4x2Þ

�
þ A3

A5

�
CCnZnpðanrÞ



sinðphÞ
cosðphÞ

� �
: ð83Þ

5. Numerical examples and discussion

The numerical solution for a three-layer laminated plate shown in Fig. 1 is investigated. The host ma-
terial is used by steel and the piezoelectric layer is PZT4. The piezoelectric layers are poled in the thickness
direction and both surfaces of each layer are short-circuited. The material properties are listed in Table 1.
The thickness of the host layer and piezoelectric layers are 20 and 2 mm, respectively. Four plates of
different radii, 0.6, 0.3, 0.2, and 0.1 m, are studied. The results are compared with those of 3D FEA and the
analytical model (Wang et al., 2001) based on Kirchhoff’s CPT. Two kinds of boundary conditions,
clamped edges and simply supported edges, are investigated. To investigate the effect of piezoelectric layer,
four single-layer plates, the dimension and properties of which are identical to those of the host material of
the three-layer piezoelectric coupled plates, are also analysed, and the results compared. The 3D FEAs were
carried out using ABAQUS 6.1.

5.1. Clamped edges

Tables 2–5 list comparisons of the frequencies calculated for clamped edges by the IPT-based model
(proposed), the CPT-based model (Wang et al., 2001), and 3D FEA, where Table 2 is for r0 ¼ 0:6m, Table 3
for r0 ¼ 0:3m, Table 4 for r0 ¼ 0:2m, and Table 5 for r0 ¼ 0:1m. The following notations are adopted in the
tables: xp fem represents the flexural vibration frequency of the piezoelectric laminate plate obtained by
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FEA; xp min the frequency calculated using the IPT-based model; xp kir the frequency using the CPT-based
model; xe fem the flexural frequency of the one-layer plate obtained by 3D FEA; p is the wave number in the
circumferential direction; m is the index of the flexural modes for a certain wave number.

Table 1

Material properties of the piezoelectric coupled plate

Property Structural layer Piezoelectric layer

E (GPa) 200 –

l 0.3 –

CE
11 (GPa) – 132

CE
12 (GPa) – 71

CE
33 (GPa) – 115

CE
13 (GPa) – 73

CE
55 (GPa) – 26

e31 (Cm�2) – �4.1
e33 (Cm�2) – 14.1

e15 (Cm�2) – 10.5

N11 (nFm
�1) – 7.124

N33 (nFm
�1) – 5.841

q (kgm�3) 7800 7500

Table 2

Comparison of frequencies for r0=h ¼ 60 (clamped edge)

p m xp fem (rad/s) xp min (rad/s) xp kir (rad/s) xp min=xp fem xp kir=xp fem

0 1 900.1 899.1 902.5 0.999 1.003

1 1 1862.7 1864.1 1878.2 1.001 1.008

2 1 3050.9 3044.7 3081.1 0.998 1.010

0 2 3475.2 3468.3 3513.4 0.998 1.011

1 2 5272.1 5272.6 5373.7 1.000 1.019

2 2 7306.2 7283.0 7472.1 0.997 1.023

Table 3

Comparison of frequencies for r0=h ¼ 30 (clamped edge)

p m xp fem (rad/s) xp min (rad/s) xp kir (rad/s) xp min=xp fem xp kir=xp fem

0 1 3567.7 3556.0 3609.9 0.997 1.012

1 1 7295.5 7295.2 7512.7 1.000 1.030

2 1 11844.0 11775.6 12324.3 0.994 1.041

0 2 13456.0 13375.0 14053.7 0.994 1.044

1 2 20075.0 20017.1 21494.7 0.997 1.071

2 2 27467.0 27205.5 29888.5 0.990 1.088

Table 4

Comparison of frequencies for r0=h ¼ 20 (clamped edge)

p m xp fem (rad/s) xp min (rad/s) xp kir (rad/s) xp min=xp fem xp kir=xp fem

0 1 7901.5 7857.2 8122.3 0.994 1.028

1 1 15890.0 15864.1 16903.5 0.998 1.064

2 1 25449.0 25186.8 27729.7 0.990 1.090

0 2 28802.0 28491.8 31620.9 0.989 1.098

1 2 42095.0 41794.6 48363.1 0.993 1.149

2 2 56658.0 55735.4 67249.2 0.984 1.187
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As shown in Table 2, for a thin plate with a very large diameter–thickness ratio, such as r0=h ¼ 60, the
frequencies from both CPT-based model and IPT-based model are in close agreement with the FEA results.
The IPT-based model produces results almost coincident with those of FEA while the results from CPT-
based model differs less than 2.3%. Tables 3–5 show that, as the diameter–thickness ratio increases, the
proposed IPT-based model provides results similar to those of FEA with a maximum difference of only
3.2%. However, the frequencies computed by the CPT-based model can be as large as 60% greater than
those by FEA (for the case of a thick plate with a diameter–thickness ratio of 10). Both the CPT-based and
IPT-based models give results closer to the FEA results at lower frequencies than they do at higher fre-
quencies. As shown in Table 5, the CPT-based model gives a frequency 59.6% greater than that of the FEA
in case of p ¼ 2 and m ¼ 2 while it gives a value only 11.2% greater for the first mode. The CPT-based
model gives greater frequencies than the IPT-based model because the CPT neglects the effect of transverse
shear deformation and rotatory inertia and hence overestimates the frequencies. Fig. 3 shows frequency
ratios of the three-layered plates to those of one-layered plates for the following cases: r0=h ¼ 60, 30, 20,
and 10. It seems that the piezoeffects are more obvious on plates with a higher diameter–thickness ratio
than on that with a lower one when piezoelectric layers of same thickness are attached.

5.2. Simply supported edges

Tables 6–9 compare the frequencies calculated for circular plates with simply supported edge by the IPT-
based model, the CPT-based model, and 3D FEA, where Table 6 is for r0 ¼ 0:6m, Table 7 for r0 ¼ 0:3m,

Table 5

Comparison of frequencies for r0=h ¼ 10 (clamped edge)

p m xp fem (rad/s) xp min (rad/s) xp kir (rad/s) xp min=xp fem xp kir=xp fem

0 1 29229.0 28816.8 32489.2 0.986 1.112

1 1 55213.0 54678.6 67614.1 0.990 1.225

2 1 84292.0 82297.6 110918.9 0.976 1.316

0 2 94232.0 91902.8 126483.5 0.975 1.342

1 2 130382.0 127771.0 193452.4 0.980 1.484

2 2 168570.0 163167.0 268996.8 0.968 1.596

Fig. 3. Effect of thickness of piezoelectric layers on frequencies to plates (clamped edge).
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Table 8 for r0 ¼ 0:2m, and Table 9 for r0 ¼ 0:1m. Fig. 4 plots frequency ratios of the three-layered plates to
those of one-layered plates for the four cases: r0=h ¼ 60, 30, 20, and 10. The findings for the clamped plates
are reflected again by the simply supported cases.

Table 6

Comparison of frequencies for r0=h ¼ 60 (simply supported edge)

p m xp fem (rad/s) xp min (rad/s) xp kir (rad/s) xp min=xp fem xp kir=xp fem

0 1 435.2 435.1 435.6 1.000 1.001

1 1 1218.5 1221.4 1227.5 1.002 1.007

2 1 2242.4 2241.1 2262.4 0.999 1.009

0 2 2606.5 2605.5 2625.2 1.000 1.007

1 2 4221.0 4228.7 4282.4 1.002 1.015

2 2 6088.3 6079.5 6193.9 0.999 1.017

Table 7

Comparison of frequencies for r0=h ¼ 30 (simply supported edge)

p m xp fem (rad/s) xp min (rad/s) xp kir (rad/s) xp min=xp fem xp kir=xp fem

0 1 1735.3 1734.4 1742.5 1.000 1.004

1 1 4810.2 4828.6 4910.0 1.004 1.021

2 1 8792.1 8771.6 9049.7 0.998 1.029

0 2 10222.0 10197.9 10500.9 0.998 1.027

1 2 16316.0 16334.6 17129.7 1.001 1.050

2 2 23278.0 23148.1 24775.9 0.994 1.064

Table 8

Comparison of frequencies for r0=h ¼ 20 (simply supported edge)

p m xp fem (rad/s) xp min (rad/s) xp kir (rad/s) xp min=xp fem xp kir=xp fem

0 1 3884.0 3879.5 3920.7 0.999 1.010

1 1 10623.0 10671.1 11047.4 1.005 1.040

2 1 19209.0 19114.5 20361.9 0.995 1.060

0 2 22301.0 22186.4 23627.1 0.995 1.060

1 2 34940.0 34903.9 38541.9 0.999 1.103

2 2 49098.0 48572.9 55745.7 0.989 1.135

Table 9

Comparison of frequencies for r0=h ¼ 10 (simply supported edge)

p m xp fem (rad/s) xp min (rad/s) xp kir (rad/s) xp min=xp fem xp kir=xp fem

0 1 15122.0 15059.1 15682.9 0.996 1.037

1 1 39205.0 39321.9 44189.7 1.003 1.127

2 1 67828.0 66843.9 81447.7 0.986 1.201

0 2 78080.0 76888.6 94508.6 0.985 1.210

1 2 115525.0 114276.4 154167.4 0.989 1.334

2 2 155227.0 151364.6 222982.9 0.975 1.436
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6. Conclusions

An analytical solution of free flexural vibration of a three-layered piezoelectric laminated circular
moderately thick plate is proposed based on the Mindlin’s plate theory for the cases where the electrodes on
the piezoelectric layers are shortly connected. The electric potential distribution across thickness of pi-
ezoelectric layers is modelled by a sinusoidal function. Hence the Maxwell equation is enforced. The
mathematical derivation was presented in detail. Numerical investigations were performed for plates with
various diameter–thickness ratios and with two kinds of boundary conditions, clamped edge and simply
supported edge. The validity of the solution based on IPT model for diameter–thickness ratios not less than
10 was verified by the 3D FEAs. The CPT-based model proved to be valid only for thin plates and diverge
from the FEA results for thick plates, particularly for high frequencies.
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Appendix A

The piezoelectric material is transversely isotropic material where for planes normal to the poling di-
rection, the material properties are equivalent in all directions. For plate problems, the 2D or 1D con-
stitutive relationships can be reduced from the 3D constitutive relationship. Without losing arbitrariness, a
coordinate system is adopted where the thickness direction of plate is in axis 3, as shown in Fig. 5. If the
piezoelectric material is poled in direction 3, its constitutive relationship is given by (Tiersten, 1969)

r11
r22
r33
r12
r13
r23

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

CE
11 CE

12 CE
13 0 0 0

CE
12 CE

11 CE
13 0 0 0

CE
13 CE

13 CE
33 0 0 0

0 0 0 1
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ðCE
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Fig. 4. Effect of thickness of piezoelectric layers on frequencies to plates (simply supported edge).
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D1

D2

D3

8<:
9=; ¼

0 0 0 0 e15 0
0 0 0 0 0 e15
e31 e31 e33 0 0 0

0@ 1A
e11
e22
e33
c12
c13
c23

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ

N11 0 0
0 N11 0
0 0 N33

0@ 1A E1
E2
E3

8<:
9=;; ðA:2Þ

where r11, r22, r33, r12, r13, and r23 are the stress components; e11, e22, e33, c12, c13, and c23 the engineering
strain components; D1, D2, and D3 the electric displacements; E1, E2, and E3 the electric field intensities; CE

11,
CE
33, C

E
12, C

E
13, and CE

55 the elasticity moduli at constant electric field; e31, e33, and e15 the piezoelectric strain
coefficients; and N11, and N33 the dielectric constants.
Solving r33 ¼ 0 for e33 ¼ 0 gives

e33 ¼
e33
CE
33

E3 �
CE
13

CE
33

ðe11 þ e22Þ: ðA:3Þ

Substituting Eq. (A.3) into Eqs. (A.1) and (A.2) yields
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where C
E
11, C

E
12, �ee31, and N33 are given by

C
E
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33

; C
E
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;
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e233
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33
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ðA:6Þ

Fig. 5. Coordinate system for plates.
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If the transverse shear stiffness is modified by a shear factor j2, Eq. (A.4) becomes
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Appendix B

Some coefficients referred to in this paper are given as follows:

A1 ¼
1

2
ð1
"

� lÞD1 þ 1

 
� C

E
12

C
E
11

!
D2

#
; A2 ¼

1

2
ð1
"

þ lÞD1 þ 1

 
þ C

E
12

C
E
11

!
D2

#
;

A3 ¼ j2
Eh
1þ l

þ 2j2CE
55h1; A4 ¼ 2

3
h3q1
*

þ h1ð3h2 þ 3hh1 þ h21Þq2
+
; A5 ¼

4h1ðe15 � �ee31Þ
p

;

A6 ¼
4h1e15

p
; A7 ¼ 2hq1 þ 2h1q2; A8 ¼

e15
e15 þ �ee31

; A9 ¼
2N11

pðe15 þ �ee31Þ
; A10 ¼

2pN33

h21ðe15 þ �ee31Þ
;

ðB:1Þ

P1 ¼ ðD1 þ D2Þð2h1e215 � N11A3Þ;

P2 ¼ A3 2h1�ee231

�
þ p2N33ðD1 þ D2Þ

h21

�
;

P3 ¼ A4ðA3N11 � 2h1e215Þ þ A7N11ðD1 þ D2Þ;
P4 ¼ �A7A4N11;

P5 ¼ 2A7h1ðe215 � �ee231Þ �
½A7ðD1 þ D2Þ þ A4A3�p2N33

h21
� A7A3N11;

P6 ¼
p2A7A3N33

h21
;

P7 ¼
p2A7A4N33

h21
:

ðB:2Þ

G1 ¼
ðD1 þ D2Þ
ðA6 � A3A9Þ

; G2 ¼ A5ðA9A3 � A6Þ þ A6A10ðD1 þ D2Þ; ðB:3Þ

sðaÞ1n ¼ Znpðanr0Þ; sðaÞ26 ¼ pZ6pðb1r0Þ=r0; sðaÞ36 ¼ b1Z
0
6pðb1r0Þ; ðB:4Þ

sðaÞ2n ¼ G2=A10
A10A3A6G1 � A3A5 þ A3A6 � A4A6x2
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�
þ A5ðA9A3 � A6A8Þxn þ A5A9A7x2 � A6A10A3

G2

� A3A5ðA8 � 1Þxn þ A10A23 þ ðA10D1 þ A10D2 � A5ÞA7x2

ðA6 � A3A9ÞðA3 � A4x2Þ

�
anZ 0
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sðaÞ3n ¼ pG2=A10
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sðbÞ4n ¼ 2N11G2=A10
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